

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0452 of 14 May 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

TURBO SMART

Fasteners for use in concrete for redundant non-structural systems

pgb - Polska Sp. z o.o. ul. Fryderyka Wilhelma Redena 3 41-807 ZABRZE POLEN

manufacturing plant 3

16 pages including 3 annexes which form an integral part of this assessment

EAD 330747-00-0601

ETA-16/0452 issued on 15 July 2016

European Technical Assessment ETA-16/0452

Page 2 of 16 | 14 May 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z85356.19 8.06.01-40/17

European Technical Assessment ETA-16/0452

English translation prepared by DIBt

Page 3 of 16 | 14 May 2020

Specific Part

1 Technical description of the product

The TURBO SMART concrete screw is an anchor of size 5 and 6 mm made of galvanised steel respectively steel with zinc flake coating and of stainless steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 3

3.2 Safety in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 2, Annex C 1 and C 2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 and C 2
Durability	See Annex B 1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330747-00-0601, the applicable European legal act is: [97/161/EC].

The system to be applied is: 2+

Z85356.19 8.06.01-40/17

European Technical Assessment ETA-16/0452

Page 4 of 16 | 14 May 2020

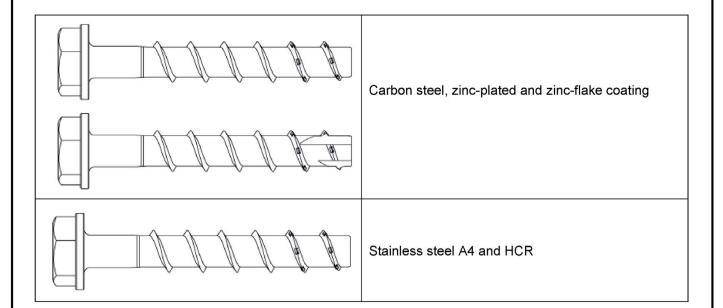
English translation prepared by DIBt

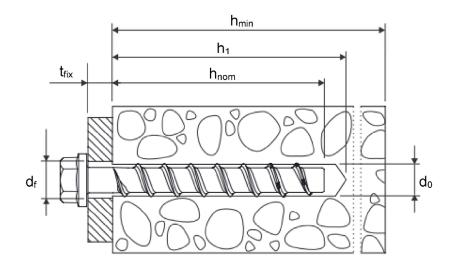
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin 14 May 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department


beglaubigt: Tempel


Z85356.19 8.06.01-40/17

Product in installed condition

TURBO SMART concrete screw

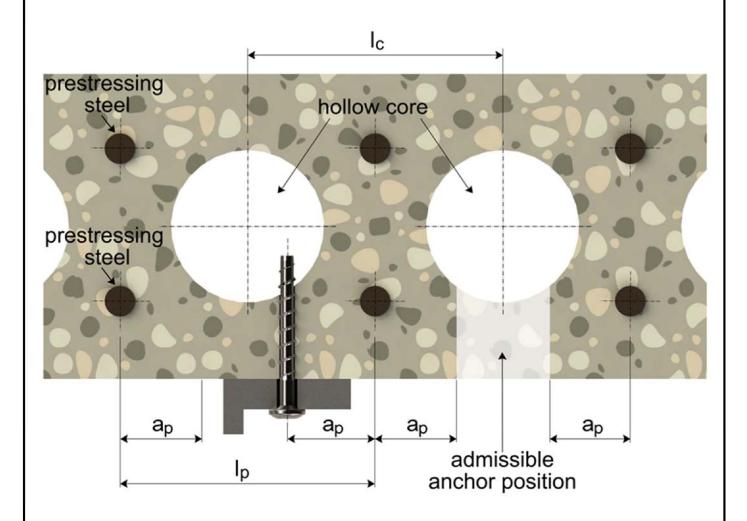
 d_0 = nominal drill bit diameter h_{nom} = nominal anchorage depth h_1 = depth of the drill hole

 h_{min} = minimum thickness of member

 t_{fix} = thickness of fixture

d_f = diameter of clearance hole in the fixture

TURBO SMART concrete screw


Product description

Installed condition

Annex A1

Installed condition in precast prestressed hollow core slabs

Important ratio: $\frac{w}{e} \le 4, 2$

w = core width

e = web thickness

 I_c = core distance $\ge 100 \text{ mm}$

I_p = prestressing steel ≥ 100 mm

a_p = distance between anchor position and prestressing steel ≥ 50mm

TURBO SMART concrete screw

Product description

Installed condition in precast prestressed hollow core slabs

Annex A2

1	—		TURBO SMART S-BSZ	Concrete screw version with hexagon head with pressed-on washer
2	[—		TURBO SMART S-BSM	Concrete screw version with hexagon head with pressed-on washer and T-drive
3	<u> </u>	(Sp. 3)	TURBO SMART S-BSH	Concrete screw version with hexagon head
4		(100 mg/s)	TURBO SMART S-BSV	Concrete screw with countersunk head
5			TURBO SMART S-BSP	Concrete screw with pan head
6		20, 0°	TURBO SMART S-BSF	Concrete screw with large pan head
7			TURBO SMART S-BSE	Concrete screw with countersunk head and connection thread
8	-		TURBO SMART S-BSB	Concrete screw with hexagonal head and connection thread
9	=	0	TURBO SMART S-BSS	Concrete screw with hexagon drive and connection thread
10			TURBO SMART S-BSA	Concrete screw with connection thread and hexagon socket drive
11		0	TURBO SMART S-BSI	Concrete screw with internal metric thread and hexagon drive

TURBO SMART concrete screw

Product description

Screw types

Annex A3

Table A1: Material

Part	Name	Туре	Material	f _{yk}	fuk
1 2 3 4 5	Concrete	TURBO SMART	Steel EN 10263-4:2017, zinc-plated acc. to EN ISO 4042:2018 or zinc flake coating acc. to EN ISO 10683:2018 (≥ 5µm)	560	700
6 7 8	screw	TURBO SMART A4	1.4401, 1.4404, 1.4571, 1.4578	N/mm²	N/mm²
9 10 11		TURBO SMART HCR	1.4529		

 f_{yk} = nominal characteristic steel yield strength f_{uk} = nominal characteristic steel ultimate strength

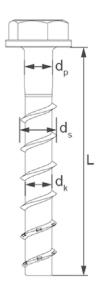
Table A2: Dimensions

Anchor size			5	6
Screw length	≤L	[mm]	2	200
Core diameter	dk	[mm]	4,0	5,1
Thread outer diameter	d₅	[mm]	6,5	7,5

Marking:

TURBO SMART (Zinc plated and Zinc flake)

Anchor type: TSM
Anchor size: 10
Length of the anchor: 100


TURBO SMART A4

Anchor type: TSM
Anchor size: 10
Length of the anchor: 100
Material: A4

TURBO SMART HCR

Anchor type: TSM
Anchor size: 10
Length of the anchor: 100
Material: HCR

Marking "k" or "x" for anchors with connection thread and $h_{nom} = 35 \text{ mm}$

TURBO SMART concrete screw

Product description

Material, Dimensions and markings

Annex A4

Specification of Intended use

Anchorages subject to:

- static and quasi static loads
- Used only for multiple use for non-structural application according to EN 1992-4:2018
- Used for anchorages with requirements related to resistance of fire (not for using in prestressed hollow core slabs): size 6
- Used for anchorages in prestressed hollow core slabs: size 6

Base materials:

- Reinforced and unreinforced concrete without fibers according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- · Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Concrete screws subject to dry internal conditions: all screw types.
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition no particular aggressive conditions exits: screw types made of stainless steel with marking A4.
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition if particular aggressive conditions exits: screw types made of stainless steel with marking HCR.
 - Note: Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 and EOTA Technical Report TR 055.
- The design for shear load according to EN 1992-4:2018, Section 6.2.2 applies for all specified diameters d_f of clearance hole in the fixture in Annex B2, Table 3.

Installation:

- Hammer drilling or hollow drilling.
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth of aborted hole or closer, if the aborted hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.

TURBO SMART concrete screw

Intended use
Specification

Annex B1

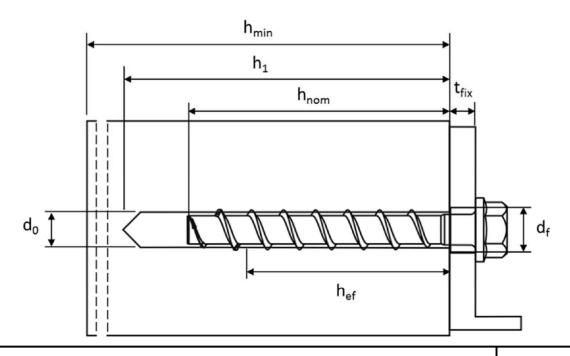
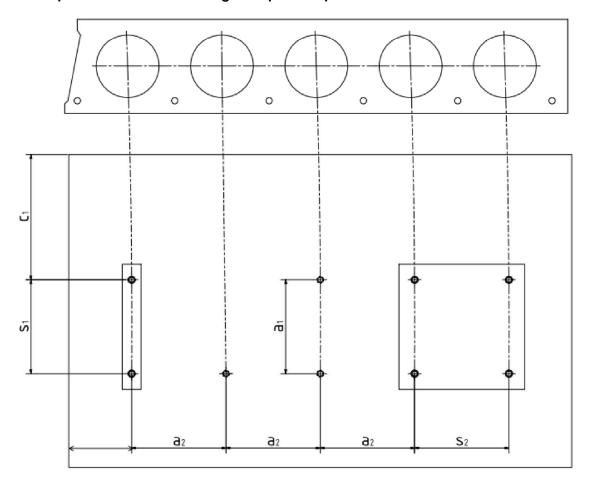


Table B1: Installation parameters

TURBO SMART concrete screw	size		5	6	
Nominal embedment depth hnom [mm]			h _{nom1}	h _{nom1}	h _{nom2}
			35	35	55
Nominal drill hole diameter	d₀	[mm]	5	6	3
Cutting diameter of drill bit	d _{cut} ≤	[mm]	5,40	6,40	
Drill hole depth	h₁≥	[mm]	40	40	60
Clearance hole diameter	d _f ≤	[mm]	7	8	
Installation torque (version with connection thread)	th _{Tinst} ≤ [N		8	10	
Recommended torque for impact screw driver		[NIma]	Max. torque according to manufacturer's instructions		
		[Nm]	110	160	

Table B2: Minimum thickness of member, minimum edge distance and minimum spacing

TURBO SMART concrete	screw s	ize	5	6		
Naminal ambadment depth			h _{nom1}	h _{nom1}	h _{nom2}	
Nominal embedment dept	Nominal embedment depth		35	35	55	
Minimum thickness of member	h _{min}	[mm]	80	80	100	
Minimum edge distance	Cmin	[mm]	35	35	40	
Minimum spacing	Smin	[mm]	35	35	40	


TURBO SMART concrete screw

Intended use

Installation parameters

Installation parameters for anchorages in precast prestressed hollow core slabs

 $c_1, c_2 = edge distance$

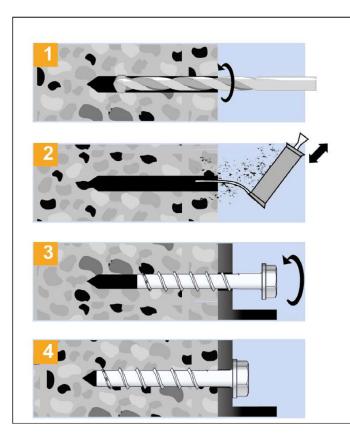
 $s_1, s_2 = anchor spacing$

a₁, a₂ = distance between anchor groups

 c_{min} = minimum edge distance \geq 100 mm

 s_{min} = minimum anchor spacing $\ge 100 \text{ mm}$

 a_{min} = minimum distance between anchor groups \geq 100 mm


TURBO SMART concrete screw

Intended use

Installation parameters for anchorages in prestressed hollow slabs

Installation instructions

1. Drilling:

Create hammer drilled or hollow drilled borehole.

2. Cleaning of the drill hole:

Remove drill dust by vacuuming or blowing.

3. Installation:

Install the anchor by impact screwdriver or torque wrench.

4. Complete:

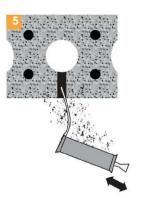
Verify that the head is pressed to the fixture.

Remark: cleaning of borehole is not necessary when using an hollow drill bit

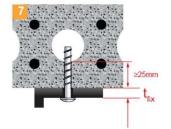
TURBO SMART concrete screw

Intended use

Installation instructions



Installation instructions for anchorages in prestressed hollow core slabs



TURBO SMART concrete screw

Intended use

Installation instructions for anchorages in prestressed hollow slabs

			Static at	nd quasi-static loa -		-	
TURBO SMAR	T concrete screw	size		5		6	
Nominal embe	dment depth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	
			[mm]	35	35	55	
Steel failure for	r tension and she	ar loadir	ng				
Characteristic t	tension load	N _{Rk,s}	[kN]	8,7	1	4,0	
Partial factor te	ension load	Y Ms,N	[-]		1,5		
Characteristic	shear load	$V_{Rk,s}$	[kN]	4,4	7	7,0	
Partial factor sl	hear load	Y Ms,∨	[-]		1,25		
Ductility factor		k ₇	[-]		0,8		
Characteristic l	bending load	M ⁰ Rk,s	[Nm]	5,3	1	0,9	
Pull-out failure							
Characteristic	cracked	N _{Rk,p}	[kN]	1,5	3,0	7,5	
tension load C20/25	uncracked	$N_{Rk,p}$	[kN]	1,5	3,0	7,5	
	C20/25				1,12		
ncreasing C30/37		l w	ļ ,	1,22			
factor for N _{Rk,p}	C40/50	Ψς	[-]		1,41		
C50/60				1,58			
Concrete failur	e: Splitting failure	, concre	te cone fa	ilure and pry-out fail	ure		
Effective embe	dment depth	h _{ef}	[mm]	27	27	44	
1. 51	cracked	$k_1 = k_{cr}$	[-]	7,7			
k-factor	uncracked	k ₁ = k _{ucr}	[-]	11,0			
Concrete	spacing	S _{cr,N}	[mm]		3 x h _{ef}		
cone failure	edge distance	C _{cr,N}	[mm]		$1,5 \times h_{\text{ef}}$		
	Char. resistance	N ⁰ Rk,Sp	[kN]		min(N ⁰ _{Rk,c} ; N _{Rk,p})	_	
Splitting failure	spacing	S cr,Sp	[mm]	120	120	160	
	edge distance	C cr,Sp	[mm]	60	60	80	
Factor for pry-	out failure	k 8	[-]		1,0		
Installation fact	tor	Y inst	[-]	1,2	1,0	1,0	
Concrete edge	failure						
Effective length	n in concrete	$I_f = h_{ef}$	[mm]	27	27	44	
Nominal outer screw	diameter of	d _{nom}	[mm]	5		6	
TURB	O SMART con	crete	screw				
Perfo	mances					Annex C1	

Table C2: Characteristic values for resistance in prestressed hollow core slabs C30/37 to C50/60

TURBO SMART concrete screw size			6				
Bottom flange thickness	dь	[mm]	≥ 25	≥ 30	≥ 35		
Characteristic resistance	F ⁰ Rk	[kN]	1	2	3		
Edge distance	Ccr	[mm]	100				
Spacing	Scr	[mm]	200				
Installation factor	Yinst	[-]	1,0				

Table C3: Limiting distances for application in prestressed hollow core slabs

Distances for application in precast prestressed hollow core slabs							
Minimum edge distance	C _{min}	[mm]	≥ 100				
Minimum anchor spacing	Smin	[mm]	≥ 100				
Minimum distance between anchor groups	a _{min}	[mm]	≥ 100				
Distance of core	Ic	[mm]	≥ 100				
Distance of prestressing steel	Ip	[mm]	≥ 100				
Distance between anchor position and prestressing steel	ap	[mm]	≥ 50				

TURBO SMART concrete screw

Performances

Characteristic values and limiting distances in prestressed hollow core slabs

Annex C2

TURBO SMART	concrete sc	rew size			1	6		
Material				Steel		Stainless st	Stainless steel A4/HCR	
Nominal embed	ment depth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1} 35	h _{nom2}	
Steel failure for	tension and s	shear load (Fr	over 6 = Nove	- c = \/p ₁ , - c)				
Steel lallule loi	R30	F _{Rk,s,fi30}	[kN]	,	 ,9	1	,2	
	R60	F _{Rk,s,fi60}	[kN]		,8		, <u> </u>	
	R90	F _{Rk,s,fi90}	[kN]		,6		, <u> </u>	
D120		F _{Rk,s,fi120}	[kN]		,4		, <u>– </u>	
Characteristic Resistance	R30	M ⁰ Rk,s,fi30	[Nm]		, · ,7		, 0 ,9	
R60		M ⁰ Rk,s,fi60	[Nm]		,6		,9	
	R90	M ⁰ Rk,s,fi90	[Nm]	0,5		0,9		
	R120 M ⁰ _{Rk,s,fi120}		[Nm]	0,3		0,6		
Pull-out failure								
Characteristic	R30-R90	$N_{Rk,p,fi}$	[kN]	0,75	1,875	0,75	1,875	
Resistance	R120	$N_{Rk,p,fi}$	[kN]	0,6	1,5	0,6	1,5	
Concrete cone f	ailure							
Characteristic	R30-R90	N ⁰ Rk,c,fi	[kN]	0,86	2,76	0,86	2,76	
Resistance	R120	N^0 Rk,c,fi	[kN]	0,68	2,21	0,68	2,21	
Edge distance								
R30 - R120		C cr,fi	[mm]		2 >	(h _{ef}		
In case of fire at	tack from mo	ore than one s	side, the m	inimum edge o	distance shall be	e ≥300mm.		
Spacing								
R30 - R120		S cr,fi	[mm]	4 x h _{ef}				
Pry-out failure								
R30 - R120		k 8	[-]		1	,0		
The anchorage	depth has to	be increased	for wet co	ncrete by at le	ast 30 mm com	pared to the give	en value.	

TURBO SMART concrete screw	
Performances Characteristic values under fire exposure	Annex C3